Kode Naskah Soal: 238

KIMIA

Gunakan Petunjuk A dalam menjawab soal nomor 37 sampai nomor 42.

- 37. Suatu larutan dari asam lemah monobasa dengan konsentrasi 0.1 M mempunyai nilai pH = 4.0. Nilai Ka dari asam lemah ini adalah
 - (A) 1.0×10^{-6}

10-8 = 10- Ka

- (B) 0.5×10^{-6}
- ((c)) 1.0×10^{-7}
- (D) 0.5×10^{-7}
- (E) 1.0×10^{-8}
- 38. Larutan sukrosa dalam air memiliki penurunan tekanan uap sebesar $\frac{1}{6}$ P° mmHg, di mana P° adalah tekanan jenuh uap air. Molalitas larutan sukrosa adalah (Mr: sukrosa = 342, air = 18)
 - (A) 0.83 m

- (B) 5,55 m
- (C) 9,26 m
- 39. Di antara unsur-unsur $_4$ P, $_{19}$ Q, $_{13}$ R, $_{31}$ S, $_{15}$ T, $_{34}$ U dan 53 V, yang terletak dalam golongan yang sama pada sistem periodik adalah
 - (A) P dan R

- (B) Qdan S
- (C) Q dan V
- 40. Diketahui entalpi pembakaran propana C₃H₈ (g) = 0.23 % (g) = 0 -a kJ/mol; entalpi pembentukan CO_2 (g) = -bkJ/mol; dan entalpi pembentukan $H_2O(l) = -c$ kJ/mol. Dengan demikian, entalpi pembentukan propana (dalam kJ/mol) adalah
 - (A) a b c
 - (B) a 3b + 3c
 - (C) a + 3b 3c

 - (E) –a + 3b + 3c

41.

Dari pasangan senyawa isomer diatas yang merupakan isomer cis-trans adalah

- (D) 2 dan 4
- (E) 3 dan 4
- 42. Konsentrasi Br terlarut yang dihasilkan dari pencampuran 100 mL NaBr 0,01 M dengan 100 mL MgBr2 0,01 M dan 1,88 gr AgBr adalah (Ksp AgBr = 5.4×10^{-13} ; Ar Ag = 108; Br = 80)
 - A) 0,010 M

(D) 0,030 M

- (B**))** 0,015 M
- (E) 0,065 M
- (C) 0,020 M

Gunakan Petunjuk B dalam menjawab soal nomor 43 sampai nomor 46.

43. Logam aluminium dan logam zinc bersifat amfoter.

 $Al + NaOH + H_2O \rightarrow NaAlO_2 + \frac{3}{2} H_2, Zn + 2NaOH$ $\sqrt{6} \rightarrow \text{Na}_2\text{ZnO}_2 + \text{H}_2 \text{ dan Al} + 3\text{HCl} \rightarrow \text{AlCl}_3 + \frac{3}{5} \text{H}_2$ $= 0^{1/3} \stackrel{\text{def}}{\sim} Zn + 2HCl \rightarrow ZnCl_2 + H_2.$

44. Elektrolisis larutan kalsium klorida dengan elektroda Au menghasilkan gas H2 pada katoda dan gas O_2 pada anoda.

Pada katoda, molekul air tereduksi membentuk gas H_2 , sedangkan pada anoda molekul air teroksidas membentuk O2.

45. Gliserol memiliki viskositas lebih kecil dibanding etilen glikol.

SEBAB

Gliserol memiliki ikatan hidrogen antarmolekul yang lebih lemah dibanding etilen glikol.

Kode Naskah Soal: 238

46. H₃PO₄ memiliki kekuatan asam yang lebih besar dibandingkan H₃PO₃.

SEBAB

A

Tambahan atom oksigen yang mempunyai keelektronegatifan besar dalam H_3PO_4 akan lebih menarik kerapatan elektron dari ikatan O-H, sehingga ikataunya semakin sulit melepas H^+ .

Gunakan Petunjuk C dalam menjawab soal nomor 47 sampai nomor 48.

47. Perhatikan reaksi berikut ini: CaC_2 (s) + $2H_2O$ (l) \rightarrow $Ca(OH)_2$ (aq) + C_2H_2 (g). Pernyataan yang BENAR mengenai reaksi tersebut adalah ...

A

- (1) Nama gas yang dihasilkan adalah asetilena.
- (2) Produk reaksi antara 1 mol gas tersebut dan 1 mol HCl adalah monomer PVC.
- Gas tersebut dapat menghilangkan warna air brom.
- (4) Untuk mereaksikan 160 gr CaC_2 diperlukan paling sedikit 50 gr air. (Ar: H = 1, O = 16, Ca = 40, C = 12)
- 48. Reaksi X + 2Y → Z dipelajari kinetikanya dan diperoleh data sebagai berikut.

orperotest data bebagai berikut.			
Nomor	[X], M	[Y], M-	Laju
Percobaan	[pembentukan Z, M/s
1	0,1	0,1	0,16
2	0,1	0,2	0,32
3	0,2	0,2	0,64
4	0,3	0,3	X.

>

Pernyataan yang BENAR mengenai reaksi di atas adalah ...

- (1) Nilai x adalah 1,44. ✓
- (2) Orde reaksi dapat ditentukan secara langsung dari koefisien reaksi.
- (3) Reaksi tersebut memiliki konstanta laju sebesar $16\,\mathrm{M^{-1}s^{-1}}$. 1
- (4) Orde terhadap B adalah 2. V

10-10-10 (1-0) (1-